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1 Concentration Inequalities for Convex Functions

1.1 Overview

Let X1, X2, . . . , Xn be independent, and let Z = f(X1:n), were f : Rn → R. We have been
asking the question: “when is there a high probability bound for |Z − E[Z]|.

Earlier, we had a solution in terms of the bounded differences inequality:

Theorem 1.1 (Bounded differences inequality). Suppose that f : Rn → R is L1:n bounded,
i.e.

|f(X1:n)− f(x1:k−1, x
′
k, xk+1:n)| ≤ Lk ∀x1:n, xk,

and X1, . . . , Xn
iid∼ N(0, 1). Then for all t ≥ 0,

P(|f(X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− 2t2∑n

k=1 L
2
k

)
.

This martingale concentration method let us control U-statistics and the supremum of
an empirical process.

Last lecture, we had the Gaussian concentration inequality:

Theorem 1.2 (Gaussian concentration). Let X1, X2, . . . , Xn
iid∼ N(0, 1) and f : Rn → R

such that f is L-Lipschitz in ‖ · ‖2, i.e.

|f(x)− f(y)| ≤ L‖x− y‖2 ∀x, y ∈ Rn.

Then

1. f(X1:n)− E[f(X1:n)] is sG(L).

2.

P(|f(X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− t2

2L2

)
.
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This let us discuss the singular values of a Gaussian random matrix and Gaussian
complexity. To generalize this, the intuition is that we need 2 components:

1. We require the function f to not change much under perturbation of x.

2. We require the measure of X to behave sufficiently nicely.

1.2 Concentration of separately convex, Lipschitz functions

Theorem 1.3 (Concentration of separately convex, Lipschitz functions). Suppose that

1. f is L-Lipschitz and coordinatewise convex:

∂2kf(x1:n) ≥ 0 if ∂2kf exists

2. (Xi)i∈[n] independent with Xi ∈ [a, b] a.s.

Then

P(f(X1:n)− E[f(X1:n)] ≥ t) ≤ exp

(
− t2

2L2(b− a)2

)
.

This is a one-sided inequality; we don’t have a lower tail bound here. To derive this
result, we use the entropy method and the Herbst argument. This is covered in chapter
3.1 in Wainwright’s textbook.

Remark 1.1. This has a stronger assumption than the bounded difference inequality, but
it gives a stronger result.

1.3 Concentration of convex Lipschitz functions

Theorem 1.4 (Concentration of convex Lipschitz functions). Suppose that

1. f is L-Lipschitz and convex:

∇2f(x) � 0 if ∇2f exists

2. (Xi)i∈[n] independent with Xi ∈ [a, b] a.s.

Then f(X1:n)− E[f ] is sG(L(b− a)), so

P(f(|X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− t2

2L2(b− a)2

)
.

Remark 1.2. Unlike the previous inequality, this one gives us an upper and lower tail
bound. This has a stronger assumption than separate convexity, but it gives a stronger
result.

To derive this result, Wainwright’s book use a transportation approach. This is in
chapter 3.6.
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1.4 Applications

1.4.1 Rachemacher complexity

If A ⊆ Rn, how do we measure its size? We previously defined the Gaussian complexity

G(A) : −E
W

iid∼N(0,1)

[
sup
a∈A
〈W,a〉

]
.

Definition 1.1. The Rademacher complexity is

R(A) : −E
εi

iid∼Unif({±1})

[
sup
a∈A
〈ε, a〉

]
.

These notions are related, but they are useful in different situations.

Example 1.1. For all 1 < p <∞,

R(Bp(r)) = Eε

[
sup
‖a‖p≤r

〈a, ε〉

]
= rEε[‖ε‖q] = rn1/q,

G(Bp(r)) = rcqn
1/q,

where 1
p + 1

q = 1.
If p = 1, then

R(B1(r)) = rEε[‖ε‖∞] = r,

G(B1(r)) = EW

[
sup
i∈[n]
|Wi|

]
≈ r
√

2 log n+O(1).

Here is an exercise from Wainwright’s book.

Proposition 1.1. There exist universal constants c, C such that for all A ⊆ Rn,

cR(A) ≤ G(A) ≤ C
√

log nR(A).

If we want to talk about concentration of Rachemacher random variables, we can use the
above concentration inequalities. Define f(ε) = supa∈A〈ε, a〉. Then f(ε) is D(A)-Lipschitz,
where D(A) = supa∈A ‖a‖2.

Lemma 1.1. Let g1, g2 be convex functions. Then g(x) = max{g1(x), g2(x)} is convex.

3



This implies that f(ε) is convex. So we get that f(ε)−E[f(ε)] is sG(2D(A)). This tells
us that

f(ε) ≈ R(A) +O(D(A)).

1.4.2 Operator norm

Let

X =

X1,1 · · · X1,d

...
...

Xn,1 · · · Xn,d

 ∈ Rn×d,

where Xi,j ∈ [−1, 1] a.s. Then, if we let f(x) = ‖x‖op, then f is 1-Lipschitz and convex.
So f(X) = E[f(X)] is sG(2), which tells us that

‖X‖op ' E[‖X‖op] +O(1).

1.5 Proof techniques: the Herbst argument and transportation

Here is how we can prove the above concentration inequalities.

1. Entropy method and the Herbst argument

Definition 1.2. The Herbst argument is that a sufficient condition for X to be
sG(σ) is to show that

H(eλX) ≤ λ2σ2

2
E[eλX ],

where H is the entropy.

Why do we want to look at H(eλX)? This is because it has a good tensorization
property when Xi are independent:

H(eλf(X1:n)) ≤ E

[
n∑
i=1

H(eλfk(Xk) | X\k)︸ ︷︷ ︸
easy to handle when
fk Lip., Xk bdd.

]

For this, see chapter 3.1 of Wainwright’s textbook or chapter 3 of van Handel’s
textbook.

2. Transportation approach:

Lemma 1.2 (Bobkov-Gotze). Given a measure µ ∈ P(Rn),

X ∼ µ, ∀f 1-Lipschitz, f(X) is sG(σ) ⇐⇒ W1(ν, µ) ≤
√

2σ2 KL(ν || µ)∀ν ∈ P(Rn),

where W1 is the transportation distance and KL is the relative entropy.

This property on the right also tensorizes in some way. For more on this, see chapter
3.3 in Wainwright’s book or chapter 4 in van Handel’s book.
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1.6 Concentration of Lipschitz functions of log-concave random variables

Definition 1.3. A function ψ : Rn → R is r-strongly convex if ∇2ψ(x) � rIn, if this
exists.

Definition 1.4. If µ ∈ P(Rn), we say that µ is r-strongly log-concave if µ(x) =
exp(−ψ(x)), where ψ is r-strongly convex.

Example 1.2. Let pθ(x) = 1
Z(θ)

exp(〈θ, T (x)〉) be an exponential family. Suppose we have

the prior
π(θ) ∼ N(0, In)

and the posterior

p(θ | x) ∝ pθ(x)π(θ) =
1

Z̃(x)
exp(〈θ, T (x)〉 − logZ(θ)− 1

2‖θ‖
2
2)

So we may let

ψ(θ) = −〈θ, T (x)〉+ logZ(θ) +
1

2
‖θ22 + log Z̃(x).

Note that
(logZ(θ))′′ = Covθ(T (X), T (X)) ≥ 0.

Theorem 1.5 (Concentration of Lipschitz functions of log-concave random variables).
Suppose that

1. f is L-Lipschitz,

2. X ∼ µ ∈ P(Rn), where µ is r-log-concave.

Then f(X1:n)− E[f(X1:n)] is sG(L/
√
r).

1.7 Proof technique: the isoperimetric inequality

The isoperimetric inequality is a geometric property in Rn with Lebesgue measure. If
A ⊆ Rn has fixed volume and we want to minimize the perimeter, then the solution is
when A is a ball. This generalizes to other measures:

X ∼ µ = N(0, In) Sn−1(
√
n) Unif({±1}n)

Half space Spherical cap Hamming ball

The isoperimetric inequality implies that f(X) concentrates when f is Lipschitz. Suppose
that P(A) = 1/2, and take µ to be, for example, the Gaussian measure. Then define
Aε = {a : ∃b ∈ A s.t. ‖a− b‖ ≤ ε}. In this sitaution, perimeter is defined as

lim
ε→0

f(Aε)− f(A)

ε
.
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Then, using the fact that P({x ∈ Rn : x1 ≤ 0}) = 1/2. the isoperimetric inequality tells us
that for all small enough ε,

P(Aε) ≥ P({x ∈ Rn : x1 ≤ ε}) = 1− Φ(ε) ≥ 1− exp

(
− t

2

2

)
.

For more on this, see chapter 3.2 of Wainwright’s book and also see Chapter 7 of the
book by Lugosi, Massart, and Boucheron.
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